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How to train a neural net? Empirical Verification

Learning to learn Meta-gradient Explosion/Vanishing

Generalization of Trained Optimizer

• Idea: use a meta-learning approach to tune hyper-
parameters or learn a new optimizer! 
[Andrychowicz et al. 2016] [Wichrowska et al. 
2017] [Metz et al. 2019]

• Goal: find a good optimizer for a distribution of
tasks.

• Idea: Abstract the optimization algorithm as a
mapping from the current state to the next state
with parameter Θ. Optimize the parameter Θ for
the distribution of task.

• Optimizer can be as simple as SGD with tunable
step size, can also be as complicated as a deep
neural network.

How to train an optimizer?

How to train neural networks?

Just use SGD/Adam!

Step size, 
momentum, 

weight decay, 
……

• For SGD/Adam, tuning the hyper-parameters can
be very time-consuming.
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• Unroll the optimizer for T steps.
• Define a meta-objective over the trajectory.
• Do (meta-)gradient descent on optimizer

parameter Θ.
• No theoretical guarantees on training process or

the learned optimizer

This work: Analyze step size tuning in GD/SGD for 
simple quadratic objectives. 

• Objective: min 𝑓 𝑤 = !
"
𝑤#𝐻𝑤

• Algorithm: gradient descent with constant step
𝑤$%! = 𝑤$ − 𝜂∇𝑓 𝑤$ = 𝐼 − 𝜂𝐻 𝑤$

• Naïve meta-objective: loss at last step
F 𝜂 = 𝑓(𝑤&,()

Point w at T-th iteration 
with step size 𝜂

Theorem: For almost all values of 𝜂, the meta-gradient 
F′ 𝜂 is either exponentially large or exponentially small 
in T.
• Idea: meta-gradient is exponentially large (small)

because the meta-objective is exponentially large
(small) in T.

• New objective: G 𝜂 = !
(
log 𝑓 𝑤&,( = !

(
log F(𝜂)

Theorem: For the new objective, the meta-gradient 
G′ 𝜂 is always polynomial in all relevant parameters. 

• G) 𝜂 = *+
*,
⋅ F) 𝜂 , both terms are exponentially 

large or small, but they cancel each other.
• This is exactly how one would compute G) 𝜂

using backpropagation è numerical issues!
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• Setting: least squares problem
𝑦 = 𝑤∗#𝑥 + 𝜉, 𝑤∗ = 1, 𝑥 ∼ 𝑁 0, 𝐼* , 𝜉 ∼ 𝑁(0, 𝜎")

• Objective: squared loss on training data
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• Algorithm: gradient descent with constant step 
size (similar for SGD)

𝑤$%! = 𝑤$ − 𝜂∇𝑓 𝑤$
Two ways to define meta-objective

1. Train-by-train:
Define meta-objective on training set, e.g., simply 
choose 𝐹 𝜂 = 𝑓(𝑤&,()
2. Train-by-validation [Metz et al. 2019]
Use a separate validation set 𝑥!) , 𝑦!) , … (𝑥0!
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When do we need train-by-validation?
Theorem: 
1. when noise 𝜎 is large, and n (#samples) is a constant 
fraction of d (#dimension), then train-by-validation is 
better.
2. When n (#samples) is much larger than 
d (#dimension), then train-by-train is close to optimal.

1. Large noise and small sample size

• Train-by-train chooses a large constant step size 
so that the optimizer quickly converges to the 
ERM solution. When the noise is large, the ERM 
solution overfits to the noise and is far from w*

• Train-by-validation chooses a smaller step size to 
leverage the signal in the training samples 
without overfitting to the noise.

2. Small noise and large sample size

• The ERM solution is close to w*
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Step size tuning on least square problems

MLP optimizer on MNIST dataset
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