
Guarantees for Tuning the Step Size using a Learning-to-Learn Approach
Xiang Wang, Shuai Yuan, Chenwei Wu, Rong Ge

Duke University

How to train a neural net? Empirical Verification

Learning to learn Meta-gradient Explosion/Vanishing

Generalization of Trained Optimizer

• Idea: use a meta-learning approach to tune hyper-
parameters or learn a new optimizer!
[Andrychowicz et al. 2016] [Wichrowska et al.
2017] [Metz et al. 2019]

• Goal: find a good optimizer for a distribution of
tasks.

• Idea: Abstract the optimization algorithm as a
mapping from the current state to the next state
with parameter Θ. Optimize the parameter Θ for
the distribution of task.

• Optimizer can be as simple as SGD with tunable
step size, can also be as complicated as a deep
neural network.

How to train an optimizer?

How to train neural networks?

Just use SGD/Adam!

Step size,
momentum,

weight decay,
……

• For SGD/Adam, tuning the hyper-parameters can
be very time-consuming.

Optimizer (Θ)

w
f(w)
∇f(w)

……

∆w
w’ = w + ∆w

SGD(𝜂) Neural Network
Optimizer

Optimizer
(Θ)

w0
f(w0)
∇f(w0)

……

w1
f(w1)
∇f(w1)

……

Optimizer
(Θ)

• Unroll the optimizer for T steps.
• Define a meta-objective over the trajectory.
• Do (meta-)gradient descent on optimizer

parameter Θ.
• No theoretical guarantees on training process or

the learned optimizer

This work: Analyze step size tuning in GD/SGD for
simple quadratic objectives.

• Objective: min 𝑓 𝑤 = !
"
𝑤#𝐻𝑤

• Algorithm: gradient descent with constant step
𝑤$%! = 𝑤$ − 𝜂∇𝑓 𝑤$ = 𝐼 − 𝜂𝐻 𝑤$

• Naïve meta-objective: loss at last step
F 𝜂 = 𝑓(𝑤&,()

Point w at T-th iteration
with step size 𝜂

Theorem: For almost all values of 𝜂, the meta-gradient
F′ 𝜂 is either exponentially large or exponentially small
in T.
• Idea: meta-gradient is exponentially large (small)

because the meta-objective is exponentially large
(small) in T.

• New objective: G 𝜂 = !
(
log 𝑓 𝑤&,(= !

(
log F(𝜂)

Theorem: For the new objective, the meta-gradient
G′ 𝜂 is always polynomial in all relevant parameters.

• G) 𝜂 = *+
*,
⋅ F) 𝜂 , both terms are exponentially

large or small, but they cancel each other.
• This is exactly how one would compute G) 𝜂

using backpropagation è numerical issues!

0 100 200 300
Meta steps

0

0.2

0.4
Ours
Tensorflow

• Setting: least squares problem
𝑦 = 𝑤∗#𝑥 + 𝜉, 𝑤∗ = 1, 𝑥 ∼ 𝑁 0, 𝐼* , 𝜉 ∼ 𝑁(0, 𝜎")

• Objective: squared loss on training data

𝑓 𝑤 =
1
2𝑛>

./!

0

𝑦. −𝑤#𝑥. "

• Algorithm: gradient descent with constant step
size (similar for SGD)

𝑤$%! = 𝑤$ − 𝜂∇𝑓 𝑤$
Two ways to define meta-objective

1. Train-by-train:
Define meta-objective on training set, e.g., simply
choose 𝐹 𝜂 = 𝑓(𝑤&,()
2. Train-by-validation [Metz et al. 2019]
Use a separate validation set 𝑥!) , 𝑦!) , … (𝑥0!

) , 𝑦0!
)),

define

𝐺 𝜂 =
1
2𝑛"

>
./!

0!

𝑦′. −𝑤&,(𝑥′.
"

When do we need train-by-validation?
Theorem:
1. when noise 𝜎 is large, and n (#samples) is a constant
fraction of d (#dimension), then train-by-validation is
better.
2. When n (#samples) is much larger than
d (#dimension), then train-by-train is close to optimal.

1. Large noise and small sample size

• Train-by-train chooses a large constant step size
so that the optimizer quickly converges to the
ERM solution. When the noise is large, the ERM
solution overfits to the noise and is far from w*

• Train-by-validation chooses a smaller step size to
leverage the signal in the training samples
without overfitting to the noise.

2. Small noise and large sample size

• The ERM solution is close to w*

0

ERM (TbT)
Early stopping

(TbV)

w*

0 ERM (TbV, TbT)

w*

Step size tuning on least square problems

MLP optimizer on MNIST dataset

0 1 2 3 4
0

2

4

6

R
M

SE
 (t

es
t)

TbT
TbV

0 1 2 3 4
0

2

4

6

R
M

SE
 (t

ra
in

)

TbT
TbV

0 2500 5000 7500 10000
Sample size

0

0.5

1

1.5

2

R
M

SE
 (t

ra
in

)

TbT
TbV

0 2500 5000 7500 10000
Sample size

0

0.5

1

1.5

2

R
M

SE
 (t

es
t)

TbT
TbV

[Andrychowicz et al. 2016] Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford, B.,
and De Freitas, N. Learning to learn by gradient descent by gradient descent. In Advances in neural information processing
systems, pp. 3981–3989, 2016.

[Wichrowska et al. 2017] Wichrowska, O., Maheswaranathan, N., Hoffman, M. W., Colmenarejo, S. G., Denil, M.,
de Freitas, N., and Sohl-Dickstein, J. Learned optimizers that scale and generalize. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp. 3751–3760. JMLR. org, 2017.

[Metz et al. 2019] Metz, L.,Maheswaranathan, N., Nixon, J., Freeman, D., and Sohl-Dickstein, J. Understanding
and correcting pathologies in the training of learned optimizers. In International Conference on Machine Learning,
pp. 4556–4565, 2019.

