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A Pre-trained Models

All the pre-trained models used in our experiments, namely SMURF [3], ARFlow [2], and
RAFT [4] (used in the following Table 4) are provided by their authors. Specifically, for
experiments on the Sintel dataset, the ARFlow model is (unsupervisedly) fine-tuned on the
Sintel training set; neither the SMURF model nor RAFT model are fine-tuned on the Sintel
training set. The pre-trained SMURF and ARFlow models used in the KITTI experiments
are (unsupervisedly) fine-tuned on the KITTI-2015 training set.

We keep the default parameters of the classical flow estimator LDOF [1] in our experi-
ments.

B Impact of Hyperparameters

A larger 6, reduces the candidates of invalid smooth motion, and thus, reduces the number
of predicted MB points. This results in a smaller improvement in motion boundary detection
(Table 1). Nevertheless, our method still outperforms the baseline method over a large range
of Gism.

Osm | 01 02 04 06 0.8 | Baseline
clean | 74.6 745 735 722 712 70.3
final | 67.8 674 659 650 644 63.5

Table 1: Impact of the threshold 6, for M, on MB detection in F1 score (%), with flow
estimates by SMURF.

Table 2 shows the improvements of the flow estimates of the points in set P by our
refinement method with different @ and 7. Increasing o (left panel in Table 2) sets a stricter
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criterion for Equation 5 (in the main paper), and thus, less points are selected into set P. For
instance, with T = 0.2 and o = 1.0, the number of replaced points is reduced from 61% to
44% of MB points, compared with setting both 7 and ¢ as 0.2. Those selected points are
largely affected by the flow estimates across the motion boundaries since the estimated flows
of point q and ¢’ on the two sides of the motion boundary are large. Replacing flow for such
points likely leads to better rewards.

Similarly, increasing 7 (right panel in Table 2) would decrease the smallest safe distance
d*, and thus, less points are selected into the set P. In addition, those selected points in set
P are very close to motion boundaries (MBs) where the estimates are poorer, resulting in a
generally increasing improvement by the replacement method.

different o (7 = 0.2) different T (o = 0.2)
02 05 08 1.0 | 02 05 08 1.0
Clean | 54 60 60 60 | 54 65 70 72
Final | 174 190 193 193 | 174 182 177 173

Sintel

Table 2: Effect of 7 (Eq. 4 in the main paper) and « (Eq. 5 in the main paper) on flow
estimates in terms of the percentage (%) of reduction in EPE (higher = better).

C Impact of Bi-directional Flow on MB Detection

The forward and backward flow complement each other since one may be more accurate
than the other in different regions. Thus, using the bi-directional flow as inputs benefits
both the baseline and our detection method on motion boundaries. As shown in Table 3,
using bidirectional flows as inputs to the detection methods (rightmost column in each panel)
consistently outperforms those with only input flow of a single direction, over both the clean
and final passes of the Sintel dataset. This benefit is also demonstrated by the two examples
(from the clean pass of Sintel training set) in Figure 1. Particularly, the red rectangle marks
the motion boundaries that are better detected using only the forward flow for the detection
than using only the backward flow, and the blue rectangle indicates the opposite situation.
The predictions in the last column combine the advantages of the second and third columns.

In addition, our method consistently outperforms the baseline method regardless what
input flow is used.

Baseline Ours
Flow | Fward Bward Bidirect | Fward Bward Bidirect
(EPE) | (F1) (FD) (F1) (FD) (F1) (F1)
Clean 2.01 68.1 67.1 70.3 69.7 68.7 74.5
Final  2.87 61.7 60.6 63.5 63.0 61.9 67.4

Sintel

Table 3: Fi-score for our MB estimation with input flow estimates (by SMUREF [3]) of dif-
ferent directions, namely forward (Fward), backward (Bward), and bidirectional (Bidirect),
compared with the baseline method.
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True MBs Forward Flow Backward Flow Bi-directional Flow

Figure 1: Two MB detection samples from the Sintel (clean) training set with our method
using input flow of different directions. The red box marks the superior predictions of using
only forward flow for detection than using only the backward flow, and the opposite situation
is indicated by the blue box. The input flow is estimated by SMURF [3].

D Replacement on Supervised Flow Estimator

Although our proposed method is under the unsupervised setting, it can also take as input
the flow estimates by supervised flow estimators. Table 4 shows that our method can also
correct some flow estimates by a top supervised flow estimator RAFT [4] near our detected
motion boundaries.

Input Flow | Dataset Input Flow Replaced Points
AEPE % of MB points | Init AEPE | Our AEPE i
RAFT C%ean 1.48 45.17 3.57 3.46 3.08%
Final 2.83 34.14 4.77 3.96 16.98%

Table 4: Average EPE and average EPE improvement with our replacement method near our
estimated MBs of the flow estimates by RAFT [4]. About 1% of all MPI Sintel pixels are
true MB points.
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