

Introduction

Unsupervised Optical Flow Estimation

- Important due to lack of labels
- Assuming appearance constancy and flow smoothness
- Current challenges:
 - Occlusion: **Objects** cover each other
 - Motion boundary: **Objects** move differently
- → Optical flow is *low-level*, but we still need *object-level* info!

What kind of object-level info?

- Previous work: Semantic Segmentation
- X Separate instances of the same class X Novel objects
- Ours: Segment Anything Model (SAM)
 - \checkmark Separate objects of different levels \checkmark Open-world objects
- \rightarrow Use SAM masks to guide unsupervised optical flow!

Method Overview

Two settings: We use SAM ...

- Setting 1: only during training
- Setting 2: both training and inference (Inference speed \downarrow , Accuracy \uparrow)

Baseline: ARFlow[1]

Three proposed adaptations:

For Setting 1:

Semantic augmentation

Homography smoothness For Setting 2:

> Mask feature module

UnSAMFlow: Unsupervised Optical Flow Guided by Segment Anything Model Shuai Yuan, Lei Luo, Zhuo Hui, Can Pu, Xiaoyu Xiang, Rakesh Ranjan, Denis Demandolx (Meta Reality Labs)

Experiments

Benchmark tests

Method		Train			
		Clean	Final		Cle
		all	all	<u>all</u>	no
Supervised	PWC-Net+ [55]	(1.71)	(2.34)	3.45	1.4
	IRR-PWC [22]	(1.92)	(2.51)	3.84	1.4
	RAFT [57]	(0.77)	(1.27)	1.61	0.6
	FlowFormer [20]	(0.48)	(0.74)	1.16	0.4
	SAMFlow [73]* [†]	-	-	1.00	0.3
Unsupervised	UnFlow-CSS [42]	-	7.91	9.38	5.3
	DDFlow [34]	(2.92)	(3.98)	6.18	2.2
	SelFlow [35]	(2.88)	(3.87)	6.56	2.6
	SimFlow [23]	(2.86)	(3.57)	5.93	2.1
	ARFlow [33]	(2.79)	(3.73)	4.78	1.9
	UFlow [26]	(2.50)	(3.39)	5.21	2.0
	UPFlow [39]	(2.33)	(2.67)	4.68	1.7
	Ours (baseline)	(2.67)	(3.63)	4.29	1.6
	Ours (+aug)*	(2.35)	(3.33)	4.00	1.5
	Ours (+aug +hg)*	(2.25)	(3.10)	4.00	1.7
	Ours $(+aug +hg +mf)^{*\dagger}$	(2.21)	(3.07)	3.93	1.6

Qualitative examples

References

- [1] Liu, L., et al.: Learning by analogy: Reliable supervision from transformations for unsupervised optical flow estimation. In CVPR, pages 6489-6498, 2020.
- [2] Yuan, S., et al.: Semarflow: Injecting semantics into unsupervised optical flow estimation for autonomous driving. In ICCV, pages 9566–9577, 2023.
- [3] Butler, D., et al.: A naturalistic open source movie for optical flow evaluation. In ECCV, pages 611–625, 2012. [4] Menze, M., et al.: Object scene flow for autonomous vehicles
- In CVPR, pages 3061–3070, 2015.

2.26 1.33 22.365.222.6226.401.272.113.8922.345.202.5626.751.262.013.79 8.18 1.4 7.83 5.67

Sintel [3]

KITTI [4]

